|
VOLUME ΙI |
1.
Learning and failure in Mathematics
Apprentissage et échec en Mathématiques |
1.1
François Pluvinage: Mathématiques d'un point de vue didactique
(plenary lecture) |
1.2 Μ. Bonacina, Α.
Haidar,
Μ. Quiroga,
Ε. Sorribas, C. Teti,
G. Paván: Mathematical teaching-learning and the development
of “sociomathematical” norms |
1.3
H. Vasilaki, A. Spyridakis, J. Stamelos, E.
Yachnakis, J. Kanellos: Test anxiety and metacognitive skills
(abstract) |
1.4 M. E. Paradise:
Developmental Mathematics |
1.5 D. Tanguay: Une expérimentation sur l'apprentissage de la
structure déductive en démonstration |
1.6 R. Ovodenko & P.
Tsamir: Possible causes of failure when handling the notion of
inflection point |
1.7 G.
Noël: The use of probability as a source of problems in mathematics
teaching |
1.8 G.
Chalepaki: Abilities and behaviour of 6th grade primary
school students with regard to the estimation and checking criteria of
the magnitude of the arithmetic operation results (abstract) |
1.9
G. Perikleidakis: The
understanding and the resolution of verbal problems by elementary school
pupils with learning disabilities in mathematics: An experimental
teaching (abstract) |
1.10 Ch. Lemonidis, M.
Hatziliami:
Family’s functional characteristics and the arithmetical knowledge of
preschoolers (abstract) |
1.11 Ch.
Androni, E.
Dimitrakopoulou, K. Zaharos: Social and cultural aspects of failure in mathematics
in kindergarten (abstract) |
|
2.
Epistemological and methodological issues on
Mathematics and its teaching Questions
épistémologiques et méthodologiques concernant les Mathématiques et leur
enseignement |
2.1
Fulvia Furinghetti & Annamaria Somaglia: The history of
mathematics and teacher education in practice: a case study (plenary lecture) |
2.2
Gert Schubring: Generalizing the concept of
multiplication – Epistemological implications of the relation between
quantity and number (plenary lecture) |
2.3 R. Bkouche: La Géométrie entre mathématiques et sciences
physiques |
2.4
D. Escobar: Teaching probability and statistics for
different disciplines |
2.5 M. Kaldrymidou,
M.
Tzekaki, Ch. Sakonidis: The management of the construction of meaning in the
mathematics classroom (abstract) |
2.6 K. Nikolantonakis : La multiplication dans le cadre de la formation
continue des professeurs d’écoles(abstract) |
2.7 L. Venegas: Une réponse possible au manque de
motivation envers les mathématiques |
2.8
P. Linardakis: Didactics of Mathematics and Lexicography (abstract) |
|
3.
Alternative forms of teaching and New Technologies in Mathematics
Education
Formes alternatives d’enseignement et nouvelles technologies dans
l’Education Mathématique |
3.1
Celia Hoyles & Richard Noss: Designing
Mathematical Learning Environments for Collaboration at a Distance (plenary lecture) |
3.2
Y. Thomaidis & M. Stafylidou: A research on
the perspectives and possibilities of a cross-curricular teaching
approach: The case of Euclidean Geometry in the 1st year of the
Greek Lyceum (abstract) |
3.3
N. Mousoulides, M. Pittalis, C. Christou: Development of an
intervention project for teaching problem-solving (abstract) |
3.4 G.M.
Troulis: Interdisciplinarité et Mathématiques: Exemples de
modélisation (abstract) |
3.5
E. Theodorou & Ch. Lemonidis: Ethnomathematics and geometry: A new interdisciplinary
proposal for teaching Geometry to lower elementary school (abstract) |
3.6
C. Bonotto: Mathematizing the everyday or “everydaying”
mathematics? |
3.7 L. Galán, M.A. Galán, A. Gálvez, A.J. Jiménez, Y.
Padilla, P.
Rodríguez:
Programming with CAS as
an alternative method of teaching mathematics in engineering |
3.8 C. Sárvári:
Pragmatic, epistemological, and heuristic values in CAS enhanced
mathematics education |
3.9
G. Polyzois: Planning a software-assisted
instructive intervention in problems of navigation, suitable for 5-7
year- old children (abstract) |
|
4. Aspects
of the Didactics of Geometry
Questions sur la Didactique de la Géométrie |
4.1
M. Barabash: Didactics of geometry teaching at school based on
teachers’ systematic knowledge of a relevant geometrical theory |
4.2
Z. Gooya & B. Z. Zangeneh: How teachers
conceive geometry teaching in Iran |
4.3 I. Georgiou, M.
Kaisari, T. Patronis: The concepts of vector and parallelogram, their
transformations and didactics: An experiment with prospective high
school teachers (abstract) |
4.4 Ε.
Demetriadou: The
effectiveness of 15 year-old students in basic geometrical constructions (abstract) |
4.5
P. Strantzalos: A new approach to the teaching
of Euclidean Geometry to students of the 1st class of the Greek Lyceum (abstract) |
4.6
A.
Strantzalos:
A proposal for a
“change of framework” of the reasoning procedures used in high-school
Euclidean Geometry, motivated by Archimedes’ work “On Plane
Equilibriums” (abstract) |
4.7
Ch. Mitsoullis: What
a mathematics teacher has learned from his 12 year-old high school
pupils when teaching them the concept of angle by using palpable
material (abstract) |
4.8
B. Georgiadou-Kambouridou & Ch. Bakas: Analyzing a teaching experiment in Geometry with 5th
grade primary school pupils
(abstract) |
4.9 E. Saucan:
A place for differential geometry? |
|